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Polarized maser growth
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A polarized maser is assumed to operate in an anisotropic medium with natural modes polarized differently
to the maser. It is shown that when the spatial growth rate and the generalized Faraday rotation rate are
comparable, the polarization of the growing radiation is different from those of the maser and medium. In
particular, for a lineary polarized maser operating in a medium with linearly polarized natural modes, the
growing radiation is partially circularly polarized. This provides a previously unrecognized source of circular
polarization that may be relevant to pulsar radio emission.
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I. INTRODUCTION between the diagonals on the Poincaré sphere representing

When a maser operates in an anisotropic medium, thihe polarizations of the maser and natural modes. The param-
natural polarization of the maser need not correspond to th@ter g is related to the projection between the polarization
natural polarization of the wave modes in the medium. Fovectors(in coordinate spageof the maser and one mode of
example, consider an idealized molecular line maser that ithe medium: if both are lineag is the cosine of twice the
Zeeman split into transitions that are intrinsically polarized,angle between them. In particular, linear polarizations that
two with opposite circular polarizations and one with linearare orthogonal on the Poincaré sphere correspond to polar-
polarization. Suppose such a linearly polarized maser opeization vectors at 45¢modulo 90 to each other.
ates in an ionized plasma whose natural modes are nearly The transfer equation for polarized radiation in the weak
circularly polarized. One expects the polarization of the am-anisotropy approximation is written down, applied to a po-
plifying radiation to be characteristic of the maser providedlarized maser, and formally solved in Sec. Il. The growth of
that the growth rate is much greater than the Faraday rotatiopolarized radiation is discussed in Sec lll, starting with the
rate and of the faster growing of the two natural modes wherspecial cases where the polarization of maser and medium
the Faraday rotation rate is much larger than the growth rateéire parallel and perpendicular on the Poincaré sphere and
However, it is not clear what the polarization is in the inter-then with illustrative examples of the growth in the general
mediate case where the two rates are comparable. Anothease, emphasizing the asymptotic solution after many growth
example is relevant to pulsar radio emission. In this case, thiengths. Some implications of the results are discussed
natural wave modes of the highly relativistic pulsar plasmabriefly in Sec. IV.
are nearly linearly polarized in most cases. The suggested
pulsar radio emission mechanisms include at least two that II. FORMAL TREATMENT OF POLARIZED MASER
involve masers with polarizations that differ from the polar- GROWTH
izations of the natural modes: maser curvature emigdigh
and anomalous cyclotron maser emiss[@]. For maser
curvature emission the maser favors a linear polarization th
is different from the linear polarization of the natural modes,
provided that the particles responsible for the emission ar
independent of those determining the dispersion of these

The transfer equation in the Mueller calculus is used to
dreat the transfer of radiation in the weak anisotropy approxi-
mation. The relevant equation was written down[%h and
gdiscussed further if6—8]; cf. also the monograph9-11.

modes. Here we point out that in the intermediate case, the A. Transfer equation in the weak anisotropy
polarization is elliptical, providing a previously unrecog- approximation
nized source of circular polarization. For radiation propagating along thedirection, the trans-

The generic problem discussed in this paper applies t@er equation is

any polarized maser operating in any anisotropic medium in

which the modes are transverse to a first approximatioa dSy/dz= ap + (= mag+ 'ae)Ses (1)
“weak anisotropy” approximationLet —u be the polarized
growth rate and let be the generalized Faraday rotation rate.
Generalized Faraday rotation is most easily visualized on th
Poincaré sphere: regard the diago(d@noted by the direc-
tion f here defined by the polarizations of the two natural

where S, with A=I, Q, U, V is the Stokes vectory, are
emission coefficientsusg are absorption coefficients, and
FAB are generalized Faraday rotation rates. These have the
forms

modes of the medium as an axis; then, the polarization point, I e M Mo My My
defined by the Stokes parameters for any given radiation, Q o 4o wm O O
rotates about this axis at the ratelue to components in the S, = , ap= Q| MaR= QM ,
two modes getting out of phase. The generic problem is char- U ay by 0 O
acterized by two numberg:/r and the cosing of the angle Vv ay my 0 0
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0 0 0 lar polarizations represented by the poles and linear
polarizations by points around the equator. Orthogonal polar-
) (2) izations are represented by points on the opposite side of a
rv. 0 -rq diagonal that passes through the center of the sphere. A com-
0 -ry 1o O pletely polarized maser defines one diagonal through the
sphere, and polarized growth alone causes radiation with one
) S ; f the two orthogonal polarizations to grow and the other to
convenient is in terms of urjpolarlzed components an amp. The polarization of the natural modes defines another
3-vectors describing the polarized components. Writhig iagonal through the sphere. Generalized Faraday rotation
=Q.U.V), a=(ag.ay,ay), r=(q.ru.v),and p 506 s described by the ternStbiz=r X Sin Egs.(3), and
=(pq: sy, v), EQ. (1) with Egs.(2) becomes this corresponds to the polarization point rotating about the
difdz=a -l - - S, dSldz=a-uS—pul+r X S. diagonal at a constant latitude relative to it. The diagonals
representing the polarizations of the maser and of the me-
3 dium correspond to the directionsu—and r, respectively,
There are two general ways of solving Ed). The first ~ through the center of the Poincaré sphere. In the general case
method involves regarding E@l) as a matrix equation and these are neither parallel nor perpendicular to each other. The
solving it by finding the eigenvalues and eigenfunctions. In-nterplay between polarized growth and generalized Faraday
tegration of the eigenvalue equation is elementary. Thigotation depends only on the ratio of the lengthsr, which
method is used here. The other method involves integrating€fine the growth rate to the Faraday rotation rate, and on the
the matrix equatioril) directly; cf. Appendix A. angle betweemu andr. o . _
Note that the theory is invariant under cyclic permutations 10 treat the general case, it suffices to consider the special
of Q, U, V. Thus the most general case may be treated b§aseuy # 0, ug=py=0, Ty, rq#0, andry=0 and to appeal
considering the special case in which oy, ro, andr are to the symmetry of the theory. In the 3-vector formalism

nonzero: any other particular case then follows by appropritSed in Eqs(3) this choice corresponds to orienting the axes
ate relabeling. on the Poincaré sphere such that #exis is alongu andr

is in thex-z plane. The general case is obtained by a rotation
of the Poincaré sphere. On writing
/I = cog2x)coq2y), U/l =cog2y)sin(2¢), VIl =sin2y),
Two simplifications are made for convenience beforeQ 12x)cod2y) 2x)sin(2y) n2x)
solving Egs.(2): the termsa, and w, are omitted. The ne- (4)

glect of a, corresponds to neglecting spontaneous emissioRyith analogous angles introduced far u, andr, a rotation
Physically, this is justified if amplified background noise is on the Poincaré sphere is equivalent to a conventional rota-
more important in the output of the maser than amplifiedton from an initial pair of polar and azimuthal anglgsy to
spontaneous emission. It is straightforward to inclugle 3 new pairy’, ¥, say. The relatiorf4) for the primed vari-
#0 and to treat amplified spontaneous emission, and thgples then determine®’, U’, V' in terms ofQ, U, V and
conclusions of this paper are unaffected by including amplixsijmilarly for the angles corresponding &g u, r.

fied spontaneous emission. The neglectupfinvolves no

actual loss of generality provided that one reinterp&tn D. Characteristic equation

Eq. (1) asS,=exp(2)Sa in @ modified Eqs(1) and(2) with The transfer equatiol) may be solved by finding the
w omitted in the matrixuag. It follows that the polarization  ejgenvalues and eigenfunctions of the matse=—pap
of the radiation, which is determined by the ratios of the+r,. where now we assume =0 and ignore spontaneous

Stokes parameters, is unaffected sayand that one is justi- emijssjon. Let an eigenvalue be denoted\byThe character-
fied in neglectingw, when considering the polarization. istic equation is

It is helpful to introduce the concept of a completely po-
larized maser, specifically one witl=0. This concept is AN =det= wag+rag—Ndag) = N* =N\ - u?r?g?=0,
useful for isolating the polarization characteristics of the (5)
growing radiation. Although there is no physical reason why ) ) )
such an idealized maser should not exist, the conditions ur¥/here the two invariants in the problem are
der which it_would occur are somewhat contrived._ The as- )\(2):“2_ 2 g=p-rlur. (6)
sumption ;=0 has no effect on the results of this paper
relating to the relative amplitudes of the Stokes parameters ifor g# 0, Eq.(5) has two real and two imaginary solutions
the growing radiation. for A, and forg=0, Eq.(5) has a double solution=0 and
either two real(for \3>0) or two imaginary(for A2<0)
solutions.
The eigenvalues are found by constructing the matrix of
In the general case, the polarization of the maser and theofactors,Aag(\), so that one has
polarization of the medium are different. It is helpful to iden- _
tify the polarizations on the Poincaré sphere. A specific po- Aas(N) (= usc* rec = Néac) = A(N) dac. ()
larization is represented by a point on the sphere, with circuPremultiplying Eq.(1) by the matrix of cofactors then gives

0
O 0 - I’V I’U
FaB= 0

An alternative way of writing Eq(1) that is sometimes

B. Completely polarized maser

C. General and special cases
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d
d_Z[AAB()\)SB] =AN)Sa+ MM Ss. (8)

When the condition5) is satisfied,Axg(\)S; is an eigen-
function.

Let \;, i=1-4, be thefour eigenvalues. Then the four

eigenfunctions are given b g(\;)Ss for any A or for an

arbitrary linear combination of these functions. The eigen
functions constructed for differerit are proportional to each
other, in the sense that the ratios of the coefficients o

[,Q,U,V are the same for differem for any given\,.

E. Eigenvalues and eigenfunctions

In the general case, the two solutions of the eigenvalue

equation(5) for A2 are
2_y2 2_1 2 2 1 2 2\2 211/2
A=\ )\1—5(,& —r)ié[(ﬂ 1)+ A1) M

9)

With A2>0 and\?<0 both real, the four eigenvalues may

be written

M =N N2= Ny Ng=iN] Ng=—iA]. (20)

Parallel polarizationgu -r =ur) correspond to\, — u, [\_|
—, and perpendicular polarizatiofg -r =0) correspond to
Ne— (u2=12)Y2 |\_| =0 for u?>r? and to A,—0, |\_|
_)(rZ_MZ)lIZ for r2<,u2.

The eigenfunctions follow from Eq8) and may be iden-
tified by choosing anyA in Ag(\;)Ss. ChoosingA=1, the
(unnormalizeg eigenfunctions are denot&lwith i=1—-4. It
is convenient to introduce the unit vectdrsr/r, p=p/ u,
and to choose as a set of three orthonormal vedtojs
XT,f X (mXTt), and to write

S=f-S, S, =uXi-S S§,=F X(uXxrf)-S. (11

PHYSICAL REVIEW E7Q, 056408(2004)

SA(2) = Mag(2)S5(0), Mag(2) = exfd(— mag+rapzl,
(14

where M g(2) is the Mueller matrix. Explicit evaluation of
the Mueller matrix directly is discussed in Appendix A. The
evaluation is straightforward in the special cases of parallel
and perpendicular polarizations, but not in the general case.

The Mueller matrix in the general case may be constructed
Py solving Eq.(13) for the Stokes parameters. This is carried
out in Appendix B.

IIl. GROWTH OF POLARIZED RADIATION

The general solution of Eql) is given by Eq.(13). It is
helpful to consider two special cases before discussing the
general case. The special cases are where the polarizations of
the maser and medium are either paralgt 1) or perpen-
dicular (g=0) on the Poincaré sphere.

A. Parallel polarization

Parallel polarizations define a single directionu on the
Poincaré sphere. The eigenvalugy are A=+u and \
=zir, and the eigenfunctions ateS and the two compo-
nents off X S. The solutions for the components that grow
and damp are

1(2) = 1(0)cosiu2) + S(0)sinh(uz),

f - S(z) =1(0)sinh(uz) + S(0)cosH uz). (15

In particular, radiation polarized in the same sense as the
maser grows exponentially, and radiation polarized in the
opposite sense damps exponentially. Generalized Faraday ro-
tation of the other two components may be described by

In terms of these quantities, the four eigenfunctions become

S == MO+ + pg\ +19)S + \urS, + u’s,,

(12)

with g=u-r/ur. The transfer equation reduces t& iz
=\;S, and the solution is

S(2) =€'75(0). (13

These four equations, E(L3) with i=1-4, may beewritten
in the form S,(z2) =M g(2)S5(0) to identify the Mueller ma-

trix Mug(2), but we do not do so explicitly here. However,
note that the solution corresponds to two linear combinations

of Stokes parameters varying as hyperbolic functions.,af

f X S(z)=F X S(0)coqrz) +1 X [f X S(0)]sin(rz).
(16)

For the particular case of circularly polarized maser and
modes, Eq(16) implies Q(z)=Q(0)codryz)—U(0)sin(ryz),
U(2=U(0)codry2)+Q(0)sin(ryz), which corresponds to
Faraday rotation of the plane of linear polarizatiof(z)
:zp(0)+%rvz; cf. Eqs.(4).

B. Perpendicular polarizations

The case where the polarization of the maser is perpen-

and two linear combinations varying as trigonometric func-gicular (on the Poincaré spher¢o the polarization of the

tions of [\_|z; each Stokes parameter ais related to the

natural modes correspondsgor =0. Then two of the eigen-

Stokes parameters at=0 through a combination of these \jues(9) are null(A=0) and the other two ar&=+\,, A2

hyperbolic and trigonometric functions.

F. Mueller matrix

=u?-r2 These two eigenvalues are real fpf>r? and
imaginary foru?<r2. The eigenfunctions with null eigenval-
ues areS, andrl —uS, , and the other two eigenfunctions are

A formal solution of Eq(1), when spontaneous emission given by Eq.(12) with g=0. Solving in the casaj>0 for

is ignored, is

given initial conditions(z=0) givesS(z)=S(0) and
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1(2) 1(0) - 1S,(0) ) vary as exp\,z) in the Mueller matrix(B3). This gives
sinh(A gz
5.2 |={ Su0) |+| - ul(0)+rS,(0) TO R G L L V(UL BN
s.@) \s.0 ~1S,(0) e e A
#21(0) = urS, (0) costngg) - 1 The result(18) is reproduced by Eq19) for g— 0 with \?
H O WP-S0) [T (4D @l (W), N i
url(0) = r?S, (0) 0 An alternative derivation of Eq19) is instructive. Sup-

pose that one averages over the oscillations associated with

For \§< 0 the hyperbolic functions are replaced by trigono-generalized Faraday rotation—for example, assuming that
metric functions in Eq(17). the source extends over a rane> 1/ of z. Then the real

Two interesting features appear for perpendicular polarand imaginary parts of the corresponding eigenfunctions are
izations. First, exponential growth occurs only faf>r2. zero. After many growth times, the damping eigenfunction
For u*<r? the system is periodic, but unlike generalized may also be set to zero. The resulting three relations between
Faraday rotation, the oscillations involve the intenﬂtFOf Stokes parameters |mp||es qu) for the remaininggrow_
u?—r? the oscillation rate goes to zero and the amplitude ofng) eigenfunction. Thus Eq(19) applies to the growing
the oscillations becomes arbitrarily Iarge. When the two rate%igenfunction in a random phase approxima‘[ion, where the
are equalu®=r?, power-law growth occurs; cf. EqA8) i random phase is the generalized Faraday angle, whictzis
Appendix A. Second, the polarization of the growing radia-here. The terms which oscillafef. Eq. (B3) in Appendix B
tion has a componerg, that corresponds to the polarization do so with an amplitude that is determined by the initial
of neither the maser nor the natural modes. Retaining onlyonditions, so that these oscillations occur with a fixed am-
the exponentially growing terms, E(L7) implies that after  plitude on an exponentially growing solution. After many
many growth lengths, the ratio of the Stokes parameters agyrowth lengths the amplitude of the oscillations becomes
proaches negligible in comparison with the amplifying component.

1:S:S,:S, = 1:0m/pi= Vu? = r?/ . (18)

[Note thatS(z)=S(0) remains constant at its initial value,
and hence its ratio to tends to zero after many growth ~ For strong growthu?>r?, one has\?=u2-r3(1-g,
lengths] As the ratiou?/r? decreases from infinity to unity, A?=-r?g%, and Eq. (19) gives 1:S:S,:S,=1:—g:(r/
the polarization changes from 100% in the sense of the mau)(1-g?):—-(1-g?. This corresponds to polarization along
ser (S,=-1) toward the polarization orthogonabn the the direction u characteristic of the maser, with an
Poincaré sphejeto both the maser and the natural modesadmixturer/u of the polarization orthogonal to both the
(S, —1). maser and medium. For weak growtp?<r? one
An interesting case is when the two polarizatignsthe  has N\2=p2g?, N2=-r2+u%(1-¢?, and Eq. (19
maser and mediuyrare both linear and are perpendicular, inimplies  1:5:S, :S,=1:~(g/|g)[1~(x?/r?(1-g)]: (u/r)
the sense defined here. In terms of polarization vectors, fox (1-g?):-(u?/r?)|g|(1-g?), which corresponds to polariza-
radiation propagating along the 3-direction, the axes can bgon along the direction of the faster growing of the natural
chosen such that the two natural modes are polarized alongodes, with an admixturéu/r)(1-g? of the polarization
the 1- and 2-axes, respectively, and then the hypothesis thgithogonal to both the maser and medium. In the intermedi-
the maser has perpendicular polarizati@m the Poincaré te case where the two rates are equdkr?, Eq.(19) gives
spherg corresponds to its polarization vector being at 45° to1 : —g2: 1 —¢2: ~g(1-g?). This reproduces the special cases of
either of these. In terms of Stokes parameters, polarization iBaraIIeI (g=1) and perpendiculatg=0) polarizations dis-
the sense of the two modes of the medium correspor@ t0 ,ssed above. In the general cage<g?<1) all of
= =1, respectively, and radiation polarized purely in the sens%ﬂsL ,S,., and hence all 00, U,V are nonzero in the grow-
of the maser corresponds t=I. In the foregoing analysis ing radigtion.
one hass —Q, Sf—>U, andS, —Vin this case. The results "y, Fjg 1 we show two examples of strong growth and in
imply that for u=>r? the maser produces radiation that is Fig. 2 two examples of weak growth. In both cases the maser
partially circularly polarized, with degree of linear polariza- js 3ssumed to be circularly polarized and the natural modes
tion U/I=\u?-r?/|u| and degree of circular polarization ,re assumed to be linearly polarizéor illustrative pur-
V/1=r/u. This source of circular polarization in maser h,ses the relative signs are chosen such that saturation oc-
sources does not appear to have been recognized previousy, s at or near 1, rather than -1, in all caséfowever, the
plots are generic in the sense that with appropriate relabeling
of the polarizations, they apply to any case that has the same
value for the ratiou/r andg. In both figures the plot on the
The analytic results in the general case are cumbersoméft is for nearly perpendicular polarizationg=-0.1, and
they are written down in a concise notation in Appendix B.the plot on the right is for nearly parallel polarizatiomss
Of particular interest is the polarization after many growth—0.955. Note that the only case where the dominant polar-
lengths. The general counterpart of EG8) is derived in ization is nearly that of the maser is for strong growth with
Appendix B[cf. Eq. (B4)] by retaining only the terms that nearly perpendicular polarizations. In the other cases illus-

D. lllustrative examples

C. Asymptotic polarization
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o 04l | o oal | tvx_/o cases where the groyvth is strong compgred
% ’ % ) with the rate of generalized Faraday rotation.
© 02F 1 < o2 7 Left: nearly perpendicular caseuy:rq:ry=

o 1 0 -1:0.1:0.01. Right: nearly parallel case
-0.2 L L L L -0.2 L L L L MyiTgiry=-1:0.01:0.1.
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trated, the dominant polarization is similar to that of theby the angle between the linear polarizations of the maser
natural modes of the medium. and medium. This is implicit in our description through the
A general conclusion is that a maser operating in a mesign of S, which is determined by the direction @i} f [cf.
dium with natural modes polarized differently to the maserEq. (12)]; this direction—and hence the sense of circular
leads to amplifying radiation with polarization that is a mix- polarization of the growing radiation—changes sign when
ture of all three Stokes paramete@sU,V. The particular the angle between the vectors passes through (penallel
ratio is determined by Eq19) after a sufficiently large num- case.
ber of growth lengths.

IV. DISCUSSION

E. Growth-induced circular polarization The main qualitative result from this investigation is that

As noted above, in the case where the maser and naturalhen a completely polarized maser operates in a medium
modes are linearly polarized and are perpendicular in th&hose natural modes have a different polarization to the ma-
sense used here, the growing radiation is partially circularlyser, the polarization of the amplifying radiation is different
polarized. In this case, “perpendicular” on the Poincarérom both those of the maser and medium and includes a
sphere implies polarization vectors at an angle of 45° to eachomponent orthogongbn the Poincaré spheréo both po-
other. When the two linear polarization vectors are at ararizations. This resulting polarization depends on the ratio
angle different from 45°, this effect still occurs. The degreeu/r of the growth rate to the Faraday rotation rate and the
of circular polarization is determined by E@L9), with S,  cosine of the angle between the two polarization directions
corresponding to circular in this case. (on the Poincaré sphereThe polarization of the growing

We show three examples that illustrate this case in Fig. 3waves changes from that characteristic of the masepfor
The calculations are performed for a circularly polarized ma=r? to that of the faster-growing natural mode fof <r2.
ser and linearly polarized modes, but the results are valid for These results are derived for a completely polarized ma-
any case with the values qf/r andg equal to the values ser, which is defined to be one wila =0 in Egs.(2). This
chosen in these three cases. Specifically, the three cases cassumption is somewhat artificial and is made to simplify the
respond to w/r=-1.005,-1.41,1.005 andg=-.995, analysis, but it does not affect the qualitative conclusions.
-0.707,0.100, respectively. These three valueg aorre- Inclusion of u, #0 leads to an additional factor efqu,2),
spond to nearly parallel, intermediate, and nearly perpenwith u, <0 for a maser, which is common to all Stokes pa-
dicular vectors on the Poincaré sphere. Ignoring the signsameters. Hence, the ratios of the Stokes parameters are un-
for linearly polarized maser and natural modes, these threehanged from the case of a completely polarized maser. An-
values ofg correspond to anglegnodulo 455 9°, 23°, and other simplifying assumption made in this paper is the
42°, respectively, between the two polarization vectors. Theeglect of spontaneous emission. The polarization of the am-
dashed curves in Fig. 3 correspond to the circular polarizaplifying radiation becomes independent of the initial radia-
tion in this case. As expected, the circular polarization istion after many growth lengths, and the neglect of spontane-
largest for polarizations that are nearly perpendicular on theus emission does not affect our results.

Poincaré sphergpolarization vectors at 45°The degree of An interesting result is that when the growth rate and the
circular polarization after many growth lengths approaches-araday rotation rate are comparable, the growing radiation
the value determined by E@L9); specifically, it approaches has a component that is orthogotiah the Poincaré sphere
—-\2=r2/ ur. The sense of circular polarization is determinedto both. In particular a linearly polarized maser in a medium

1

S/S, ——
08 8 | ! -
] e o —
g 06 g 06} WSy e - .
& & FIG. 2. As for Fig. 1, except for weak growth.
2 04 2 04 1 Left: nearly perpendicular casguy:ro:ry=
€ 02pn c 02h ] -0.1:1:0.01. Right: nearly parallel case

0 Fr Y 0 pyiTgify=-0.1:0.01:1.

02 . . . . o2 . A . .
0 100 200 300 400 500 o 1 2 3 4 5
Huz pnz
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FIG. 3. Left: uy=-1,ry=1,r5=0.1. Middle: uy=-1, r,=0.5,r5=0.5. Right: uy=-1,ry=0.1,ro=1.

with linearly polarized modes that are different from those ofincluding the parallel and perpendicular cases.
the maser leads to growing radiation that can be significantly For parallel polarization#! ,g(z) factorizes:
circularly polarized fofu/r|~1. This is of interest as a pos-

sible explanation for the circular polarization observed in Mag(2) = Mac(2Rsc(2), Mag(2) = exd— uapzl,
pulsar radio emissiofiL2]. The results of this paper may also

be relevant to the polarization of interstellar molecular line

masers[13] and to the electron cyclotron maser emission, Rag(2) = exlragz].

notably in Jupiter’sS bursts where the ellipticity of the ra-
diation can be measured direcfli4]. We propose to discuss
the suggested application to pulsars in detail elsewhere.

(A5)

Explicit evaluation gives

Mag(2) = Sag = i pap SiNN(w2) + w2pig costiuz) - 1],

ACKNOWLEDGMENT

: Rag(2) = Sag + I Mrpg sin(rz) + 172 -1].
We thank Qinghuan Luo for helpful comments on the AB(2) = dap 1 Tap SIN(IZ) + Mgl CONIZ) ~ 1]

manuscript. (A6)

For perpendicular polarizations, one hgig=\2sxs for n

APPENDIX A THE MUELLER MATRIX =3 and the sum of the infinite series gives

The Mueller matrix in the present context is defined by
Eq. (14). In this appendix direct evalution of the matrix is Mao(2) = xS sinh(\¢2) ‘2 coshizg?) -1
discussed in the general case and carried out explicitly in the ARV TAB AR N0 AB A2
cases of parallel and perpendicular polarizations.

For w,=0, the Mueller matrix14) is (A7)
" _ s bsigs SapZ . SapZ . Spp?* which applies for\2>0. For \3=-\2<0 the hyperbolic
e(2) = ex{sapz] = np + SasZ ol 31 41 functions are replaced by the corresponding trigonometric
functions.
e (A1) In the case\5=0, where the growth rate and the rate of

With Sas= Sag— ap+ap. The square of,g is an indepen- 9eneralized Faraday rotation are equal, &) reduces to
dent matrix, as is its cube, which may be written

1
Sie = AgSap * AIQtag, (A2) Mag(2) = S+ SasZ + 552ABZ2 , (A8)

where the invariant&,, g are defined by Eqg6) and where

tag is the dual ofsyg. The fourth power 0B,g follows from  and Sag, Sag Simplify due to uy=rq. This corresponds to
the characteristic equatiotb) and the fact(the Cayley- power-law rather than exponential growth or damping.
Hamilton theorem that a matrix satisfies its characteristic

equation, which implies APPENDIX B: GENERAL EXPRESSION FOR THE

o N22, - u2r2gP0ps = 0. (A3) MUELLER MATRIX
The result(A3) also follows by (matrix) multiplying Eq. The solutions(13) for the four eigenfunctiongl2) may
(A2) by sag and using be combined into terms that evolve &=cosh\,z), S
SN (Ad) =sinh(\,z), c=cog|\_|2), ands=sin(|]\_|2). These combina-
ABlaC = Hgoac: tions are written as a square mattitimes the Stokes vector

In this way, using EqgA2) and(A4) or Eq.(A3), all powers in the forml,S,S, ,S,. Then the right-hand side of E(L3)
of sag higher than the second may be reexpressed in terms ofiay be written as another square maiiz) (involving only
the three matricesyg, siB, and t,g. However, it is not C,S,c,s) times L times the initial Stokes vector
straightforward to sum the serig&1) except in special cases 1(0),5(0),S, (0),S,(0). These square matrices are
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Ly O Lz O C S 0O L44=uN2. The Mueller matrix is theM =L™1T(z)L. With
L= 0 L22 0 L24 ’ T(Z) — S CO 0 ’ D2L33 0 - D2L13 0
Lsy 0 Lsz3 O 00 c s T 0 Dilas 0 -Dilyy
0 L42 0 L44 0 0 -sc D1D2 - D2L31 0 D2L11 0 '
(B1) 0 -Dijlyp, O DiLy,
: - 2,2 — _ 2, .2 (B2)
with Lyy=-Ay(ANi+19), Lig=Nour, Lpp=ug(Ni+r9), Lo
:/.L)\E, L31:—|)\_|()\E+I’2), L33:|)\_|/.Lr, and L42:Mg()\g+r2), Dl:LllL33_ L13L31, and D2:L22L44_ L24|—421 one has
|
Da[LyilssC—Liglaic]  DalloolasS—Lislas]  DallidlasC—Liglasc]  DalloglasS—Lislass]
_ 1 D[L11basS+LoglaS]  DaflolasC—Loglst]  DilliglasS+Laslsss]  DillaglsaC = Loglasc]
DiDy| D[ L1ilgiC+ LyslbaiC] Do[— Lol 3iS+LaslasS] Dol LyglgiC+LaslasC] Do[— Logl3:S+ Lyl ass]
Dy[—Lagl1:S— Lol 31S] Da[= LaslpoC + Lol ysC]  Di[=Lagl13S—LoolasS] D= Lasl2sC + Lool guC]
(B3)
After many growth lengths the trigonometric terms are negligible, and B8). implies
D,L L D,L
1:S:S,:S, = 1= - S 142 (B4)
Dolas Lsz Dolas
with the initial polarization appearing only in the combinatiopl (0) +L;,S(0) +L 43S, (0) +L4S,(0).
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