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A polarized maser is assumed to operate in an anisotropic medium with natural modes polarized differently
to the maser. It is shown that when the spatial growth rate and the generalized Faraday rotation rate are
comparable, the polarization of the growing radiation is different from those of the maser and medium. In
particular, for a lineary polarized maser operating in a medium with linearly polarized natural modes, the
growing radiation is partially circularly polarized. This provides a previously unrecognized source of circular
polarization that may be relevant to pulsar radio emission.
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I. INTRODUCTION

When a maser operates in an anisotropic medium, the
natural polarization of the maser need not correspond to the
natural polarization of the wave modes in the medium. For
example, consider an idealized molecular line maser that is
Zeeman split into transitions that are intrinsically polarized,
two with opposite circular polarizations and one with linear
polarization. Suppose such a linearly polarized maser oper-
ates in an ionized plasma whose natural modes are nearly
circularly polarized. One expects the polarization of the am-
plifying radiation to be characteristic of the maser provided
that the growth rate is much greater than the Faraday rotation
rate and of the faster growing of the two natural modes when
the Faraday rotation rate is much larger than the growth rate.
However, it is not clear what the polarization is in the inter-
mediate case where the two rates are comparable. Another
example is relevant to pulsar radio emission. In this case, the
natural wave modes of the highly relativistic pulsar plasma
are nearly linearly polarized in most cases. The suggested
pulsar radio emission mechanisms include at least two that
involve masers with polarizations that differ from the polar-
izations of the natural modes: maser curvature emission[1,2]
and anomalous cyclotron maser emission[3,4]. For maser
curvature emission the maser favors a linear polarization that
is different from the linear polarization of the natural modes,
provided that the particles responsible for the emission are
independent of those determining the dispersion of these
modes. Here we point out that in the intermediate case, the
polarization is elliptical, providing a previously unrecog-
nized source of circular polarization.

The generic problem discussed in this paper applies to
any polarized maser operating in any anisotropic medium in
which the modes are transverse to a first approximation(the
“weak anisotropy” approximation). Let −m be the polarized
growth rate and letr be the generalized Faraday rotation rate.
Generalized Faraday rotation is most easily visualized on the
Poincaré sphere: regard the diagonal(denoted by the direc-
tion r̂ here) defined by the polarizations of the two natural
modes of the medium as an axis; then, the polarization point,
defined by the Stokes parameters for any given radiation,
rotates about this axis at the rater due to components in the
two modes getting out of phase. The generic problem is char-
acterized by two numbers:m / r and the cosineg of the angle

between the diagonals on the Poincaré sphere representing
the polarizations of the maser and natural modes. The param-
eter g is related to the projection between the polarization
vectors(in coordinate space) of the maser and one mode of
the medium: if both are linear,g is the cosine of twice the
angle between them. In particular, linear polarizations that
are orthogonal on the Poincaré sphere correspond to polar-
ization vectors at 45°(modulo 90°) to each other.

The transfer equation for polarized radiation in the weak
anisotropy approximation is written down, applied to a po-
larized maser, and formally solved in Sec. II. The growth of
polarized radiation is discussed in Sec III, starting with the
special cases where the polarization of maser and medium
are parallel and perpendicular on the Poincaré sphere and
then with illustrative examples of the growth in the general
case, emphasizing the asymptotic solution after many growth
lengths. Some implications of the results are discussed
briefly in Sec. IV.

II. FORMAL TREATMENT OF POLARIZED MASER
GROWTH

The transfer equation in the Mueller calculus is used to
treat the transfer of radiation in the weak anisotropy approxi-
mation. The relevant equation was written down in[5] and
discussed further in[6–8]; cf. also the monographs[9–11].

A. Transfer equation in the weak anisotropy
approximation

For radiation propagating along thez direction, the trans-
fer equation is

dSA/dz= aA + s− mAB + rABdSB, s1d

where SA with A= I, Q, U, V is the Stokes vector,aA are
emission coefficients,mAB are absorption coefficients, and
rAB are generalized Faraday rotation rates. These have the
forms

SA =1
I

Q

U

V
2, aA =1

aI

aQ

aU

aV

2, mAB =1
mI mQ mU mV

mQ mI 0 0

mU 0 mI 0

mV 0 0 mI

2 ,
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rAB =1
0 0 0 0

0 0 − rV rU

0 rV 0 − rQ

0 − rU rQ 0
2 . s2d

An alternative way of writing Eq.(1) that is sometimes
convenient is in terms of unpolarized components and
3-vectors describing the polarized components. WritingS
=sQ,U ,Vd, a=saQ,aU ,aVd, r =srQ,rU ,rVd, and m
=smQ,mU ,mVd, Eq. (1) with Eqs.(2) becomes

dI/dz= aI − mII − m ·S, dS/dz= a − mIS− mI + r 3 S.

s3d

There are two general ways of solving Eq.(1). The first
method involves regarding Eq.(1) as a matrix equation and
solving it by finding the eigenvalues and eigenfunctions. In-
tegration of the eigenvalue equation is elementary. This
method is used here. The other method involves integrating
the matrix equation(1) directly; cf. Appendix A.

Note that the theory is invariant under cyclic permutations
of Q, U, V. Thus the most general case may be treated by
considering the special case in which onlymV, rQ, andrV are
nonzero: any other particular case then follows by appropri-
ate relabeling.

B. Completely polarized maser

Two simplifications are made for convenience before
solving Eqs.(2): the termsaA and mI are omitted. The ne-
glect of aA corresponds to neglecting spontaneous emission.
Physically, this is justified if amplified background noise is
more important in the output of the maser than amplified
spontaneous emission. It is straightforward to includeaA
Þ0 and to treat amplified spontaneous emission, and the
conclusions of this paper are unaffected by including ampli-
fied spontaneous emission. The neglect ofmI involves no
actual loss of generality provided that one reinterpretsSA in
Eq. (1) asSA8 =expsmIzdSA in a modified Eqs.(1) and(2) with
mI omitted in the matrixmAB. It follows that the polarization
of the radiation, which is determined by the ratios of the
Stokes parameters, is unaffected bymI and that one is justi-
fied in neglectingmI when considering the polarization.

It is helpful to introduce the concept of a completely po-
larized maser, specifically one withmI =0. This concept is
useful for isolating the polarization characteristics of the
growing radiation. Although there is no physical reason why
such an idealized maser should not exist, the conditions un-
der which it would occur are somewhat contrived. The as-
sumption mI =0 has no effect on the results of this paper
relating to the relative amplitudes of the Stokes parameters in
the growing radiation.

C. General and special cases

In the general case, the polarization of the maser and the
polarization of the medium are different. It is helpful to iden-
tify the polarizations on the Poincaré sphere. A specific po-
larization is represented by a point on the sphere, with circu-

lar polarizations represented by the poles and linear
polarizations by points around the equator. Orthogonal polar-
izations are represented by points on the opposite side of a
diagonal that passes through the center of the sphere. A com-
pletely polarized maser defines one diagonal through the
sphere, and polarized growth alone causes radiation with one
of the two orthogonal polarizations to grow and the other to
damp. The polarization of the natural modes defines another
diagonal through the sphere. Generalized Faraday rotation
alone is described by the term dS/dz=r 3S in Eqs.(3), and
this corresponds to the polarization point rotating about the
diagonal at a constant latitude relative to it. The diagonals
representing the polarizations of the maser and of the me-
dium correspond to the directions −m and r , respectively,
through the center of the Poincaré sphere. In the general case
these are neither parallel nor perpendicular to each other. The
interplay between polarized growth and generalized Faraday
rotation depends only on the ratio of the lengthsm, r, which
define the growth rate to the Faraday rotation rate, and on the
angle betweenm and r .

To treat the general case, it suffices to consider the special
casemVÞ0, mQ=mU=0, rV, rQÞ0, andrU=0 and to appeal
to the symmetry of the theory. In the 3-vector formalism
used in Eqs.(3) this choice corresponds to orienting the axes
on the Poincaré sphere such that thez axis is alongm andr
is in thex-z plane. The general case is obtained by a rotation
of the Poincaré sphere. On writing

Q/I = coss2xdcoss2cd, U/I = coss2xdsins2cd, V/I = sins2xd,

s4d

with analogous angles introduced fora, m, andr , a rotation
on the Poincaré sphere is equivalent to a conventional rota-
tion from an initial pair of polar and azimuthal anglesx ,c to
a new pairx8 ,c8, say. The relation(4) for the primed vari-
ables then determinesQ8, U8, V8 in terms ofQ, U, V and
similarly for the angles corresponding toa, m, r .

D. Characteristic equation

The transfer equation(1) may be solved by finding the
eigenvalues and eigenfunctions of the matrixsAB=−mAB
+rAB, where now we assumemI =0 and ignore spontaneous
emission. Let an eigenvalue be denoted byl. The character-
istic equation is

Lsld = dets− mAB + rAB − ldABd = l4 − l2l0
2 − m2r2g2 = 0,

s5d

where the two invariants in the problem are

l0
2 = m2 − r2, g = m · r /mr . s6d

For gÞ0, Eq. (5) has two real and two imaginary solutions
for l, and forg=0, Eq. (5) has a double solutionl=0 and
either two real(for l0

2.0) or two imaginary(for l0
2,0)

solutions.
The eigenvalues are found by constructing the matrix of

cofactors,LABsld, so that one has

LABslds− mBC + rBC − ldBCd = LslddAC. s7d

Premultiplying Eq.(1) by the matrix of cofactors then gives
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d

dz
fLABsldSBg = LsldSA + lLABsldSB. s8d

When the condition(5) is satisfied,LABsldSB is an eigen-
function.

Let li, i =1–4, be thefour eigenvalues. Then the four
eigenfunctions are given byLABslidSB for any A or for an
arbitrary linear combination of these functions. The eigen-
functions constructed for differentA are proportional to each
other, in the sense that the ratios of the coefficients of
I ,Q,U ,V are the same for differentA for any givenli.

E. Eigenvalues and eigenfunctions

In the general case, the two solutions of the eigenvalue
equation(5) for l2 are

l2 = l±
2, l±

2 =
1

2
sm2 − r2d ±

1

2
fsm2 − r2d2 + 4sm · r d2g1/2.

s9d

With l+
2.0 andl−

2,0 both real, the four eigenvalues may
be written

l1 = l+, l2 = − l+, l3 = iul−u, l4 = − iul−u. s10d

Parallel polarizationssm ·r =mrd correspond tol+→m, ul−u
→ r, and perpendicular polarizationssm ·r =0d correspond to
l+→ sm2−r2d1/2, ul−u→0 for m2. r2 and to l+→0, ul−u
→ sr2−m2d1/2 for r2,m2.

The eigenfunctions follow from Eq.(8) and may be iden-
tified by choosing anyA in LABslidSB. ChoosingA= I, the
(unnormalized) eigenfunctions are denotedSi with i =1–4. It
is convenient to introduce the unit vectorsr̂ =r / r, m̂=m /m,
and to choose as a set of three orthonormal vectorsr̂ ,m̂
3 r̂ , r̂ 3 sm̂3 r̂ d, and to write

Sr = r̂ ·S, S' = m̂ 3 r̂ ·S, Sm = r̂ 3 sm̂ 3 r̂ d ·S. s11d

In terms of these quantities, the four eigenfunctions become

Si = − lisli
2 + r2dI + mgsli

2 + r2dSr + limrS' + mli
2Sm,

s12d

with g=m ·r /mr. The transfer equation reduces to dSi /dz
=liSi, and the solution is

Siszd = elizSis0d. s13d

These four equations, Eq.(13) with i =1–4, may berewritten
in the formSAszd=MABszdSBs0d to identify the Mueller ma-
trix MABszd, but we do not do so explicitly here. However,
note that the solution corresponds to two linear combinations
of Stokes parameters varying as hyperbolic functions ofl+z,
and two linear combinations varying as trigonometric func-
tions of ul−uz; each Stokes parameter atz is related to the
Stokes parameters atz=0 through a combination of these
hyperbolic and trigonometric functions.

F. Mueller matrix

A formal solution of Eq.(1), when spontaneous emission
is ignored, is

SAszd = MABszdSBs0d, MABszd = expfs− mAB + rABdzg,

s14d

whereMABszd is the Mueller matrix. Explicit evaluation of
the Mueller matrix directly is discussed in Appendix A. The
evaluation is straightforward in the special cases of parallel
and perpendicular polarizations, but not in the general case.
The Mueller matrix in the general case may be constructed
by solving Eq.(13) for the Stokes parameters. This is carried
out in Appendix B.

III. GROWTH OF POLARIZED RADIATION

The general solution of Eq.(1) is given by Eq.(13). It is
helpful to consider two special cases before discussing the
general case. The special cases are where the polarizations of
the maser and medium are either parallelsg=1d or perpen-
dicular sg=0d on the Poincaré sphere.

A. Parallel polarization

Parallel polarizations define a single directionr̂ =m̂ on the
Poincaré sphere. The eigenvalues(5) are l= ±m and l
= ±ir, and the eigenfunctions areI ±Sr and the two compo-
nents ofr̂ 3S. The solutions for the components that grow
and damp are

Iszd = Is0dcoshsmzd + Srs0dsinhsmzd,

r̂ ·Sszd = Is0dsinhsmzd + Srs0dcoshsmzd. s15d

In particular, radiation polarized in the same sense as the
maser grows exponentially, and radiation polarized in the
opposite sense damps exponentially. Generalized Faraday ro-
tation of the other two components may be described by

r̂ 3 Sszd = r̂ 3 Ss0dcossrzd + r̂ 3 fr̂ 3 Ss0dgsinsrzd.

s16d

For the particular case of circularly polarized maser and
modes, Eq.(16) implies Qszd=Qs0dcossrVzd−Us0dsinsrVzd,
Uszd=Us0dcossrVzd+Qs0dsinsrVzd, which corresponds to
Faraday rotation of the plane of linear polarization,cszd
=cs0d+ 1

2rVz; cf. Eqs.(4).

B. Perpendicular polarizations

The case where the polarization of the maser is perpen-
dicular (on the Poincaré sphere) to the polarization of the
natural modes corresponds tom ·r =0. Then two of the eigen-
values(9) are null sl=0d and the other two arel= ±l0, l0

2

=m2−r2. These two eigenvalues are real form2. r2 and
imaginary form2, r2. The eigenfunctions with null eigenval-
ues areSr andrI −mS', and the other two eigenfunctions are
given by Eq.(12) with g=0. Solving in the casel0

2.0 for
given initial conditionssz=0d givesSrszd=Srs0d and
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1 Iszd
Smszd
S'szd

2 = 1 Is0d
Sms0d
S's0d

2 + 1 − mSms0d
− mIs0d + rS's0d

− rSms0d
2sinhsl0zd

l0

+ 1m2Is0d − mrS's0d
sm2 − r2dSms0d

mrI s0d − r2S's0d
2coshsl0zd − 1

l0
2 . s17d

For l0
2,0 the hyperbolic functions are replaced by trigono-

metric functions in Eq.(17).
Two interesting features appear for perpendicular polar-

izations. First, exponential growth occurs only form2. r2.
For m2, r2 the system is periodic, but unlike generalized
Faraday rotation, the oscillations involve the intensityI. For
m2→ r2 the oscillation rate goes to zero and the amplitude of
the oscillations becomes arbitrarily large. When the two rates
are equal,m2=r2, power-law growth occurs; cf. Eq.(A8) in
Appendix A. Second, the polarization of the growing radia-
tion has a componentS' that corresponds to the polarization
of neither the maser nor the natural modes. Retaining only
the exponentially growing terms, Eq.(17) implies that after
many growth lengths, the ratio of the Stokes parameters ap-
proaches

I:Sr:S':Sm = 1:0:r/m:− Îm2 − r2/m. s18d

[Note thatSrszd=Srs0d remains constant at its initial value,
and hence its ratio toI tends to zero after many growth
lengths.] As the ratiom2/ r2 decreases from infinity to unity,
the polarization changes from 100% in the sense of the ma-
ser sSm=−Id toward the polarization orthogonal(on the
Poincaré sphere) to both the maser and the natural modes
sS'→ Id.

An interesting case is when the two polarizations(of the
maser and medium) are both linear and are perpendicular, in
the sense defined here. In terms of polarization vectors, for
radiation propagating along the 3-direction, the axes can be
chosen such that the two natural modes are polarized along
the 1- and 2-axes, respectively, and then the hypothesis that
the maser has perpendicular polarization(on the Poincaré
sphere) corresponds to its polarization vector being at 45° to
either of these. In terms of Stokes parameters, polarization in
the sense of the two modes of the medium correspond toQ
= ± I, respectively, and radiation polarized purely in the sense
of the maser corresponds toU= I. In the foregoing analysis
one hasSr →Q, Sm→U, andS'→V in this case. The results
imply that for m2. r2 the maser produces radiation that is
partially circularly polarized, with degree of linear polariza-
tion U / I =Îm2−r2/ umu and degree of circular polarization
V/ I =r /m. This source of circular polarization in maser
sources does not appear to have been recognized previously.

C. Asymptotic polarization

The analytic results in the general case are cumbersome;
they are written down in a concise notation in Appendix B.
Of particular interest is the polarization after many growth
lengths. The general counterpart of Eq.(18) is derived in
Appendix B [cf. Eq. (B4)] by retaining only the terms that

vary as expsl+zd in the Mueller matrix(B3). This gives

I:Sr:S':Sm = 1:
l+l−

2

gmr2:
l−

2 + r2

mr
:−

l+sl−
2 + r2d

mr2 . s19d

The result(18) is reproduced by Eq.(19) for g→0 with l−
2

→−g2m2r2/ sm2−r2d, l+
2→m2−r2.

An alternative derivation of Eq.(19) is instructive. Sup-
pose that one averages over the oscillations associated with
generalized Faraday rotation—for example, assuming that
the source extends over a rangeDz@1/l− of z. Then the real
and imaginary parts of the corresponding eigenfunctions are
zero. After many growth times, the damping eigenfunction
may also be set to zero. The resulting three relations between
Stokes parameters implies Eq.(19) for the remaining(grow-
ing) eigenfunction. Thus Eq.(19) applies to the growing
eigenfunction in a random phase approximation, where the
random phase is the generalized Faraday angle, which isl−z
here. The terms which oscillate[cf. Eq. (B3) in Appendix B]
do so with an amplitude that is determined by the initial
conditions, so that these oscillations occur with a fixed am-
plitude on an exponentially growing solution. After many
growth lengths the amplitude of the oscillations becomes
negligible in comparison with the amplifying component.

D. Illustrative examples

For strong growthm2@ r2, one hasl+
2=m2−r2s1−g2d,

l−
2=−r2g2, and Eq. (19) gives I :Sr :S' :Sm=1:−g: sr /

mds1−g2d :−s1−g2d. This corresponds to polarization along
the direction m characteristic of the maser, with an
admixture r /m of the polarization orthogonal to both the
maser and medium. For weak growthm2! r2, one
has l+

2=m2g2, l−
2=−r2+m2s1−g2d, and Eq. (19)

implies I :Sr :S' :Sm=1:−sg/ ugudf1−sm2/ r2ds1−g2dg : sm / rd
3s1−g2d :−sm2/ r2dugus1−g2d, which corresponds to polariza-
tion along the direction of the faster growing of the natural
modes, with an admixturesm / rds1−g2d of the polarization
orthogonal to both the maser and medium. In the intermedi-
ate case where the two rates are equal,m2=r2, Eq. (19) gives
1:−g2:1−g2:−gs1−g2d. This reproduces the special cases of
parallel sg=1d and perpendicularsg=0d polarizations dis-
cussed above. In the general cases0,g2,1d all of
Sr ,S' ,Sm, and hence all ofQ,U ,V are nonzero in the grow-
ing radiation.

In Fig. 1 we show two examples of strong growth and in
Fig. 2 two examples of weak growth. In both cases the maser
is assumed to be circularly polarized and the natural modes
are assumed to be linearly polarized.(For illustrative pur-
poses, the relative signs are chosen such that saturation oc-
curs at or near 1, rather than −1, in all cases.) However, the
plots are generic in the sense that with appropriate relabeling
of the polarizations, they apply to any case that has the same
value for the ratiom / r andg. In both figures the plot on the
left is for nearly perpendicular polarizations,g=−0.1, and
the plot on the right is for nearly parallel polarizations,g=
−0.955. Note that the only case where the dominant polar-
ization is nearly that of the maser is for strong growth with
nearly perpendicular polarizations. In the other cases illus-
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trated, the dominant polarization is similar to that of the
natural modes of the medium.

A general conclusion is that a maser operating in a me-
dium with natural modes polarized differently to the maser
leads to amplifying radiation with polarization that is a mix-
ture of all three Stokes parametersQ,U ,V. The particular
ratio is determined by Eq.(19) after a sufficiently large num-
ber of growth lengths.

E. Growth-induced circular polarization

As noted above, in the case where the maser and natural
modes are linearly polarized and are perpendicular in the
sense used here, the growing radiation is partially circularly
polarized. In this case, “perpendicular” on the Poincaré
sphere implies polarization vectors at an angle of 45° to each
other. When the two linear polarization vectors are at an
angle different from 45°, this effect still occurs. The degree
of circular polarization is determined by Eq.(19), with S'

corresponding to circular in this case.
We show three examples that illustrate this case in Fig. 3.

The calculations are performed for a circularly polarized ma-
ser and linearly polarized modes, but the results are valid for
any case with the values ofm / r and g equal to the values
chosen in these three cases. Specifically, the three cases cor-
respond to m / r =−1.005,−1.41,1.005 andg=−.995,
−0.707,0.100, respectively. These three values ofg corre-
spond to nearly parallel, intermediate, and nearly perpen-
dicular vectors on the Poincaré sphere. Ignoring the signs,
for linearly polarized maser and natural modes, these three
values ofg correspond to angles(modulo 45°) 9°, 23°, and
42°, respectively, between the two polarization vectors. The
dashed curves in Fig. 3 correspond to the circular polariza-
tion in this case. As expected, the circular polarization is
largest for polarizations that are nearly perpendicular on the
Poincaré sphere(polarization vectors at 45°). The degree of
circular polarization after many growth lengths approaches
the value determined by Eq.(19); specifically, it approaches
−l−

2=r2/mr. The sense of circular polarization is determined

by the angle between the linear polarizations of the maser
and medium. This is implicit in our description through the
sign ofS' which is determined by the direction ofm̂3 r̂ [cf.
Eq. (12)]; this direction—and hence the sense of circular
polarization of the growing radiation—changes sign when
the angle between the vectors passes through zero(parallel
case).

IV. DISCUSSION

The main qualitative result from this investigation is that
when a completely polarized maser operates in a medium
whose natural modes have a different polarization to the ma-
ser, the polarization of the amplifying radiation is different
from both those of the maser and medium and includes a
component orthogonal(on the Poincaré sphere) to both po-
larizations. This resulting polarization depends on the ratio
m / r of the growth rate to the Faraday rotation rate and the
cosine of the angle between the two polarization directions
(on the Poincaré sphere). The polarization of the growing
waves changes from that characteristic of the maser form2

@ r2 to that of the faster-growing natural mode form2! r2.
These results are derived for a completely polarized ma-

ser, which is defined to be one withmI =0 in Eqs.(2). This
assumption is somewhat artificial and is made to simplify the
analysis, but it does not affect the qualitative conclusions.
Inclusion of mI Þ0 leads to an additional factor exps−mIzd,
with mI ,0 for a maser, which is common to all Stokes pa-
rameters. Hence, the ratios of the Stokes parameters are un-
changed from the case of a completely polarized maser. An-
other simplifying assumption made in this paper is the
neglect of spontaneous emission. The polarization of the am-
plifying radiation becomes independent of the initial radia-
tion after many growth lengths, and the neglect of spontane-
ous emission does not affect our results.

An interesting result is that when the growth rate and the
Faraday rotation rate are comparable, the growing radiation
has a component that is orthogonal(on the Poincaré sphere)
to both. In particular a linearly polarized maser in a medium

FIG. 2. As for Fig. 1, except for weak growth.
Left: nearly perpendicular casemV: rQ: rV=
−0.1:1:0.01. Right: nearly parallel case
mV: rQ: rV=−0.1:0.01:1.

FIG. 1. The Stokes parameters are plotted in
two cases where the growth is strong compared
with the rate of generalized Faraday rotation.
Left: nearly perpendicular casemV: rQ: rV=
−1:0.1:0.01. Right: nearly parallel case
mV: rQ: rV=−1:0.01:0.1.
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with linearly polarized modes that are different from those of
the maser leads to growing radiation that can be significantly
circularly polarized forum / r u,1. This is of interest as a pos-
sible explanation for the circular polarization observed in
pulsar radio emission[12]. The results of this paper may also
be relevant to the polarization of interstellar molecular line
masers[13] and to the electron cyclotron maser emission,
notably in Jupiter’sS bursts where the ellipticity of the ra-
diation can be measured directly[14]. We propose to discuss
the suggested application to pulsars in detail elsewhere.
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APPENDIX A: THE MUELLER MATRIX

The Mueller matrix in the present context is defined by
Eq. (14). In this appendix direct evalution of the matrix is
discussed in the general case and carried out explicitly in the
cases of parallel and perpendicular polarizations.

For mI =0, the Mueller matrix(14) is

MABszd = expfsABzg = dAB + sABz+
sAB

2 z2

2!
+

sAB
3 z3

3!
+

sAB
4 z4

4!

+ ¯ , sA1d

with sAB=mIdAB−mAB+rAB. The square ofsAB is an indepen-
dent matrix, as is its cube, which may be written

sAB
3 = l0

2sAB + mrgtAB, sA2d

where the invariantsl0, g are defined by Eqs.(6) and where
tAB is the dual ofsAB. The fourth power ofsAB follows from
the characteristic equation(5) and the fact(the Cayley-
Hamilton theorem) that a matrix satisfies its characteristic
equation, which implies

sAB
4 − l0

2sAB
2 − m2r2g2dAB = 0. sA3d

The result (A3) also follows by (matrix) multiplying Eq.
(A2) by sAB and using

sABtBC = mrgdAC. sA4d

In this way, using Eqs.(A2) and(A4) or Eq.(A3), all powers
of sAB higher than the second may be reexpressed in terms of
the three matricessAB, sAB

2 , and tAB. However, it is not
straightforward to sum the series(A1) except in special cases

including the parallel and perpendicular cases.
For parallel polarizationsMABszd factorizes:

MABszd = mACszdRBCszd, mABszd = expf− mABzg,

RABszd = expfrABzg. sA5d

Explicit evaluation gives

mABszd = dAB − m−1mAB sinhsmzd + m−2mAB
2 fcoshsmzd − 1g,

RABszd = dAB + r−1rAB sinsrzd + r−2rAB
2 fcossrzd − 1g.

sA6d

For perpendicular polarizations, one hassAB
n =l0

2sAB
n−2 for n

ù3 and the sum of the infinite series gives

MABszd = dAB + sAB
sinhsl0zd

l0
+ sAB

2 coshsl0zd − 1

l0
2 ,

sA7d

which applies forl0
2.0. For l0

2=−l̃0
2,0 the hyperbolic

functions are replaced by the corresponding trigonometric
functions.

In the casel0
2=0, where the growth rate and the rate of

generalized Faraday rotation are equal, Eq.(A7) reduces to

MABszd = dAB + sABz+
1

2
sAB

2 z2, sA8d

and sAB, sAB
2 simplify due to mV=rQ. This corresponds to

power-law rather than exponential growth or damping.

APPENDIX B: GENERAL EXPRESSION FOR THE
MUELLER MATRIX

The solutions(13) for the four eigenfunctions(12) may
be combined into terms that evolve asC=coshsl+zd, S
=sinhsl+zd, c=cossul−uzd, ands=sinsul−uzd. These combina-
tions are written as a square matrixL times the Stokes vector
in the formI ,Sr ,S' ,Sm. Then the right-hand side of Eq.(13)
may be written as another square matrixTszd (involving only
C,S,c,s) times L times the initial Stokes vector
Is0d ,Srs0d ,S's0d ,Sms0d. These square matrices are

FIG. 3. Left: mV=−1, rV=1, rQ=0.1. Middle:mV=−1, rV=0.5, rQ=0.5. Right:mV=−1, rV=0.1, rQ=1.
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L =1
L11 0 L13 0

0 L22 0 L24

L31 0 L33 0

0 L42 0 L44

2, Tszd =1
C S 0 0

S C 0 0

0 0 c s

0 0 − s c
2 ,

sB1d

with L11=−l+sl+
2+r2d, L13=l+mr, L22=mgsl+

2+r2d, L24

=ml+
2, L31=−ul−usl−

2+r2d, L33= ul−umr, andL42=mgsl−
2+r2d,

L44=ml−
2. The Mueller matrix is thenM =L−1TszdL. With

L−1 =
1

D1D21
D2L33 0 − D2L13 0

0 D1L44 0 − D1L24

− D2L31 0 D2L11 0

0 − D1L42 0 D1L22

2 ,

sB2d

D1=L11L33−L13L31, andD2=L22L44−L24L42, one has

M =
1

D1D21
D2fL11L33C − L13L31cg D2fL22L33S− L13L42sg D2fL13L33C − L13L33cg D2fL24L33S− L13L44sg
D1fL11L44S+ L24L31sg D1fL22L44C − L24L42cg D1fL13L44S+ L24L33sg D1fL24L44C − L24L44cg

D2f− L11L31C + L11L31cg D2f− L22L31S+ L11L42sg D2f− L13L31C + L11L33cg D2f− L24L31S+ L11L44sg
D1f− L42L11S− L22L31sg D1f− L42L22C + L22L42cg D1f− L42L13S− L22L33sg D1f− L42L24C + L22L44cg

2 .

sB3d

After many growth lengths the trigonometric terms are negligible, and Eq.(B3) implies

I:Sr:S':Sm = 1:
D1L44

D2L33
:−

L31

L33
:−

D1L42

D2L33
, sB4d

with the initial polarization appearing only in the combinationL11Is0d+L22Srs0d+L13S's0d+L24Sms0d.
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